
TURBO FREEZER XL/XE 2011

Manual for software version 3.10
Last updated on March 28, 2013

Copyright c©1987-2013 Peter Dell, Florian Dingler, Bernhard Engl, Matthias Reichl

This manual is protected by copyright and subject to Creative Commons license
BY-NA-SA 3.0.
http://creativecommons.org/licenses/by-nc-sa/3.0/legalcode

This means you must attribute the work in the manner specified by the author or li-
censor. You may not use this work respectively the licensed content for commercial
purposes. If you alter, transform, or build upon this work, you may distribute the resulting
work only under the same or similar license to this one.

http://creativecommons.org/licenses/by-nc-sa/3.0/legalcode

Contents

1 Installation 11
1.1 Verifying the power supply . 12
1.2 Assembling the freezer . 12

1.2.1 Protecting from electro-static discharge 12
1.2.2 Connecting the freezer electronic with the adapter board 12
1.2.3 Disconnecting the freezer electronic from the adapter board 13

1.3 Plugging the freezer in . 13
1.3.1 Atari 600 XL (at least 64k RAM) and Atari 800 XL 13
1.3.2 Atari 800 XE, 65 XE and 130 XE 14

1.4 Turning the freezer on . 14
1.4.1 Setting the basic configuration . 14
1.4.2 Activating the freezer . 14
1.4.3 Creating the system disk . 15
1.4.4 Activating the stereo POKEY mode (optional) 16
1.4.5 Activating the integrated 512k RAM extension (optional) 16
1.4.6 Using cartridges with the Atari XE 16

1.5 Extended configurations for experts in soldering 16
1.5.1 Providing an internal power supply 16
1.5.2 Installing a SYSTEM RESET key 17
1.5.3 Providing compatibility with 1MB RAM extensions 17

2 Usage 19
2.1 Starting the freezer main menu . 20
2.2 Freezing and resuming a program . 20
2.3 Saving a frozen program . 21

2.3.1 Adapting the boot disk loader . 22
2.3.2 Freezing a program that loads parts later 22

2.4 Swapping the frozen and a saved program 23
2.5 Clearing the RAM under the OS ROM . 23
2.6 Starting debugger and DOS . 23
2.7 Starting the menu of the cartridge emulation 23

3 Debugger and DOS 25
3.1 Disk Operating System (DOS) . 25

3.1.1 Executing commands . 26
3.1.2 Command summary . 26
3.1.3 Characteristics of specific commands 27

3

Contents

3.1.4 Error messages . 27
3.2 Debugger . 28

3.2.1 Access to memory and hardware registers 28
3.2.2 Command summary . 29
3.2.3 Input of values (hexadecimal, decimal, internal code) 31
3.2.4 Input of vectors . 31
3.2.5 Access to extended memory, RAM, ROM 31
3.2.6 Display display list . 32
3.2.7 Search in memory . 32
3.2.8 Execute SIO commands . 33
3.2.9 Display interrupt and VCOUNT . 33
3.2.10 Activate direct I/O mode . 34
3.2.11 Display version number . 34
3.2.12 Display OS vectors . 34
3.2.13 Display handler address table . 35
3.2.14 Display memory usage map . 35
3.2.15 Activate printer output . 35
3.2.16 Control AtariSIO remotely . 35

4 512k RAM extension 37

5 Oldrunner – Atari OS Rev. B 39

6 Cartridge emulation 41
6.1 Basics . 41

6.1.1 Bank numbers . 41
6.1.2 Module types . 42

6.2 Activation of the cartridge emulation . 42
6.3 Cartridge emulation menu . 43
6.4 Command summary . 43
6.5 Further information . 45

6.5.1 Using “real” cartridges . 45
6.5.2 TRIG3 – $D013 . 45

7 Programming the flash ROM 47
7.1 Basics . 47
7.2 Banks and blocks in the flash ROM . 47
7.3 Starting the flash program . 48
7.4 Using the flash program . 48
7.5 Programming the flash ROM and freezer RAM 49
7.6 Updating the freezer software . 49

8 For experts: Technical details 51
8.1 Hardware . 51

4

Contents

8.2 Memory partitions . 51
8.2.1 Freezer RAM . 51
8.2.2 Flash ROM . 51

8.3 Freezer . 52
8.3.1 Shadowing of hardware registers . 52
8.3.2 Mirroring the freezer memory in . 53
8.3.3 Activating the freezer . 53
8.3.4 Configuration registers . 54
8.3.5 Freezer software and OS ROMs . 55

8.4 512k RAM extension . 56
8.5 Oldrunner . 56
8.6 Cartridge emulation . 57

8.6.1 Configuration switches . 57
8.6.2 Configuration registers . 57

9 Further information and downloads 63

5

Preface

Preface by the designer of the new freezer (2012)

TURBO FREEZER 2005 was a big success. It was very well received in the Atari
community and we got lots of positive feedback and ideas for new features. The decision
to use a flash ROM instead of an EPROM proved being particularly helpful. It enabled
users to enjoy software updates and new features as the flash ROM could be updated from
the Atari.

In particular the debugger has been extended considerably since the first release 2005.
An online help, commands for moving and comparing memory blocks, a memory usage
map and an OS vector overview, the possibility to log the screen output of debugging
sessions to printer in parallel and many additional things have been added. Special thanks
go to Erhard Pütz and Carsten Strotmann for many good ideas.

The initial run sold out fairly quickly and requests for more kept coming. In 2010
things became more concrete. Together with Wolfram Fischer, who also participated in
the first run, I started planning a new production run. Meanwhile the Lattice M4A5
CPLD had become relatively hard to get and was clearly more expensive than comparable
chips. We also wanted to use a slightly “larger” chip in order to implement some new
ideas and features. So we decided to use a Xilinx XC95144XL as the basis for the new
freezer. Having about the same price it offered more than twice the power (I/O pins and
space for logic) than the Lattice CPLD. This way we had the possibility of implementing
long-awaited features – for example the RAM extension which had been there in the very
first freezer from 1987.

By the end of 2010 Wolfram had created the first prototype of the new hardware. This
was the basis for starting the development of the new logic and software at the begin of
2011. I realized quickly that the best way would be to develop the logic from scratch
and to separate the functional blocks (freezer, cartridge emulation, etc.). This simplified
extensions in each functional block.

The logic of the cartridge emulation was completely redone; the freezer logic has
intentionally been kept compatible with old TURBO FREEZER 2005 logic. I wanted to
keep the changes to the freezer software at a minimum, so it can also be used with the
“old” freezer. This way the users of the old freezer may also benefit from further updates.

In summer 2011, after several new hardware revisions and many changes to the software
and the logic, the new freezer was completed! Unfortunately the start of the mass
production, which had been planned for end of 2011, had to be postponed by almost one
year. Wolfram had to move to a new residence and was busy at his job – hence we both had
almost no time left for our hobby. Thanks to the support from the ABBUC the production
finally started in autumn 2012! Many thanks to Wolfgang Burger for the support. Also

7

thanks to all who ordered the new freezer in advance and waited so patiently.

Salzburg, November 2012

Matthias Reichl

P.S. (March 2013): I’d like to add a big “thank you” to Peter Dell who took over the job
of translating the German manual into English. At the end this was a whole lot more of
work than expected, but Peter was really brave and did an awesome job – thanks Peter!

Preface by the designer of the new freezer (2005)

The project to design a new TURBO FREEZER started in early 2004, when Bernhard
Engl gave permission to the ABBUC to remake his products (The TURBO 1050 and
the TURBO FREEZER). To me, the TURBO FREEZER has always been the most
interesting piece of hardware extension that has ever been available for the Atari and
before starting the project, I had already studied and analyzed how it worked. That’s why
it was pretty obvious that I would engage in rebuilding the TURBO FREEZER. There
were more participants in the team: Bernhard Pahl, Florian Dingler, Torsten Schall, Guus
Assmann, Frank Schröder and towards the end also Wolfram Fischer.

So I would like to express big thanks to all of you. The project wouldn’t have come this
far without you!! And some special thanks to Guus, for the many ideas for extensions,
designing the PCBs and producing the prototypes. Thanks as well to Bernhard Engl for
his tips and the detailed information for the original TURBO FREEZER. All other team
members, thanks for the support and the testing!

My original plan was to remake the freezer, using modern parts. At this point, I never
imagined that the result would be such extensive and powerful improvements! During the
project, both hardware and software have been gradually extended and improved up to a
point where only the basic (and genius) principle idea of the freezer was left. Everything
else had been changed.

Some of the extensions came by as pure coincidence. For example the cartridge emulation:
As 16K EPROMs were much more expensive, Guus suggested using a flash ROM. To
enable programming this flash ROM from the Atari, it was needed to map the chip into
the memory-map of the Atari. This formed the basis for the cartridge emulation :-)

Likewise with the RAM: The original 2K RAM was hard to get and also quite expensive.
So the first step was to upgrade to a 32K chip and also use 128K flash ROM. The next
step was to go to 128K RAM and this made it possible to put a memory-snapshot into
this RAM. And the flash ROM size was increased to 512K. To enable this, the logic had
to be improved. And a bigger logic chip gave space for the emulation of the 16K OSS
modules and the SpartaDOS X module.

With the current state of the logic chip’s internals, there’s no space left and we’re all
content to have gotten the maximum out of the parts that were used. For the software,
there are some more ideas for extensions, but that’s all I’ll say for now.

During the development process, I’ve constantly kept in mind that I wanted to create
an open basis for further developments. For this reason, all design information is freely
available and there’s even a JTAG interface on board so the logic can be reprogrammed.

8

Preface

This will help anyone who wants to expand the freezer or even make something completely
new with it.

All relevant information and updates for the TURBO FREEZER XL/XE 2005 are
available on the internet at http://turbofreezer.horus.com/. There’s also a manual
on how to alter the logic of the TURBO FREEZER. For technical questions, write an
e-mail to hias@horus.com.

The many features of the TURBO FREEZER have not only convinced the team mem-
bers, but also many members of the ABBUC. In their Hardware Contest 2005, it was
awarded a very convincing first prize.

I wish you a lot of fun using the TURBO FREEZER and stay loyal to the Atari 8-bit
computers for many years to come.

Salzburg, December 2005

Matthias Reichl.

Preface by the developer of the original freezer (2005)

As a designer, the best recognition of achievement one can get, is that a once successful
product is continued and enhanced by a competent successor. However, if this happens
after 16 years and for a home-computer product, it’s downright sensational and means
that the product has attained cult status. While using original concept of the 1980’s,
Matthias Reichl has made a real masterpiece of the TURBO FREEZER XL/XE 2005.
The application of modern micro-chips has led to a great extension of the functionality.
He even managed to remove some minor bugs that were known, but couldn’t be prevented
using the electronics of that time, without making the product economically impossible
because of the higher chip-count.

The improvements and enhancement, especially the ingenious cartridge emulation that
was not present in the original, make the TURBO FREEZER XL/XE not only the best
and most perfect freezer for the 8-bit Atari that ever existed, but also is an all-rounder
talent, having the potential to become a legendary cult product. At this point in time,
it’s a high-light of a technical development that started more than 20 years ago. In my
notebook, which has turned yellow now, the first sketches of the concept date back to the
autumn of 1984. Finding this out even surprised myself.

Experiencing a vastly improved, enhanced and rejuvenated new series of a computer
extension product, is not only a miracle, but also a special joy and honor to me, so I wish
all proud owners of the new TURBO FREEZER XL/XE a lot of pleasure using it.

Zurich, November 2005

Bernhard Engl

Preface by the developer of the original freezer (1987)

After one year development, hundreds of used-up integrated circuits, 5300 lines of assembler
code and five-digit costs, it’s there at last: The TURBO FREEZER XL. It’s not only

9

http://turbofreezer.horus.com/
mailto:hias@horus.com

the first real freezer for the Atari, it is also the only extension a freak needs to get the
optimum and maximum usage out of his Atari. This is because apart from freezer, the
board also offers a socket for an Oldrunner and for 256k of RAM so an 800 XL can be
extended to up to 320k.

By using three ASICs containing the equivalent of over 40 TTL circuits and by avoiding
a costly multi-layer PCB, all this could be implemented at an unbeatable price. In addition,
thanks to the very powerful memory management that is anyway needed for the freezer,
the computer doesn’t need to be opened.

The careful same tuning of all components can be found in the built-in software which
consists of the freezer, a mini-DOS and a debugger. Combined with the hardware, this
power-tool gives an unprecedented possibility of control over programs to the user. That’s
why anyone who’s seen the TURBO FREEZER XL in action, wanted to have one as well.
The thrill of having total control over the computer, even though the programmer did
not want this, is well worth the price. And then there’s also the money save from buying
separate extensions that would be needed to get the same functions that are present in
the TURBO FREEZER XL.

More about this in the description of the individual functions! I wish every proud owner
lots of fun with the most fascinating product that was ever available for the Atari.

Munich, May 1987

Bernhard Engl

10

1 Installation

The TURBO FREEZER is simply attached to the parallel bus. The parallel bus differs
between Atari XL and XE computers. In Atari XL computers the parallel bus consists of
the Parallel Bus Interface (PBI) which is labeled “Parallel Bus”. In Atari XE computers the
parallel bus consists of the cartridge port and the Enhanced Cartridge Interface (ECI) which
are labeled “Cartridge” and “Expansion”. The power supply of the TURBO FREEZER
is taken from the parallel bus. In Atari 600 XL and older Atari 800 XL computers the
required power is available directly on the parallel bus. It is no longer available there in
new Atari 800 XL models and therefore has to be taken from the joystick port using the
power supply wire that is soldered to the freezer. Neither opening the Atari nor soldering
of any kind is required. Yet users with experience in soldering and with the appropriate
equipment have the option to add additional features.

The TURBO FREEZER consists of two parts, the freezer electronic in the black case
and an adapter board which establishes the connection to the PBI or ECI. The adapter
boards are available separately and hence provide a simple and cheap way to use a
TURBO FREEZER with Atari XL as well as with Atari XE computers.

Freezer

5V LED

Freezer

XEXL

Atari

Cartridge

Figure 1.1: Atari XL and XE adapter boards

There is a small number of models from the XE series (mainly 65 XE) which do not
have an ECI port. These models only have a “Cartridge” port and have no “Expansion”

11

1 Installation

port. The freezer can unfortunately not be used with these XE models.

Caution: The freezer electronic and the adapter board are not connected when they
are shipped to prevent damage during transport. The Atari should always be switched off
to also prevent damage when attaching or detaching the adapter board to/from the Atari
or when attaching or detaching the freezer electronic module to/from the adapter board.

1.1 Verifying the power supply

Owners of Atari XL computer should verify the availability of the 5V power supply on the
PBI before assembling the freezer. Owners of Atari XE computer can skip this step.

First switch the Atari off. Then attach the empty Atari XL adapter board without the
freezer electronic module to the PBI. Now switch the Atari on. If the 5V LED on the
adapter board lights up, then the 5V power supply is available on the PBI and the power
supply wire to the joystick port is not required. Even so, the external power supply wire
should not be cut off, but rolled up and put away because it may be required for use on a
different Atari without the PBI power present. After that, switch the Atari off again and
detach the adapter board from the PBI.

1.2 Assembling the freezer

1.2.1 Protecting from electro-static discharge

You should electrically ground yourself before assembling the freezer to discharge electro-
static potentials which may be caused for example by the carpet, shoes, clothing and so
on. These potentials can reach several 1000 volts and might destroy the XILINX chip and
other ICs of the freezer. Also never touch the multi-pin connectors of the freezer
without being grounded. This is true in general for all kinds of electronic parts. And
though the Atari is not too sensitive in this regard, it may still get damaged.

You best touch the heating or the protective earthing conductor pin of a power outlet.
Well suited, and very common in the professional area, are ESD (electro-static discharge)
wristbands to ground you permanently.

1.2.2 Connecting the freezer electronic with the adapter board

At the bottom of the module with the freezer electronic there are two multi-pin connectors
with 2x25 pins each. On the adapter board there are two female connectors with 2x25
pins each. The freezer module with the freezer electronic must be plugged into the adapter
board in a way that the front side with the switches points towards the PBI or ECI port of
the Atari. The module must never be plugged in the other way around because
that may destroy the freezer.

At first the module with the freezer electronic must be positioned over the female connec-
tors in a way that all pins of the multi-pin connectors are located over the corresponding
female connectors. No pins must overlap. The best way is to hold the module with the

12

1.3 Plugging the freezer in

electronic in one hand and the adapter board in the other hand. Then place the module
carefully on the board but do not press it and check from all sides that the pins are aligned
correctly. Now connect the module with the adapter board using firm pressure. This
works best if you turn the freezer upside down. Use the fingers of both hands to hold the
module on the left and right side and then press the adapter board firmly in from the
bottom with your thumbs.

After plugging the module in you should verify that all pins are completely inserted
in the female connectors. If there are pins overlapping on one side, the module with the
freezer electronic must be unplugged and must be plugged in again with correct alignment.
If the pins are not completely inserted into the female connectors you should firmly press
until no part of the pins can be seen anymore.

1.2.3 Disconnecting the freezer electronic from the adapter board

First the Atari must be switched off and the freezer must be detached from the PBI or
ECI port. The freezer electronic and the adapter board are quite tightly connected via the
50 pin connectors. You must never use too much force or perform abrupt moves
otherwise the pins may break and the freezer can be destroyed.

The following procedure works best: Lift the freezer module with the thumb by pushing
the left and the right edge of the freezer module in the middle between the two multi-pin
connectors. Lift it step by step carefully by 0.5 up to at most 1 mm on one side and then
on the other side. Make sure to pull out the contacts equally on the left and right edge as
well as in the front and the back row.

After about 2 mm the female connectors lose their grip. Now you have to proceed with
special precaution because otherwise the pins will be bent easily. After about 5 mm you
are done and the freezer electronic is disconnected from the adapter board.

1.3 Plugging the freezer in

1.3.1 Atari 600 XL (at least 64k RAM) and Atari 800 XL

Remove the snapped in PBI plastic cover, bend the metal shielding carefully away a little
bit with your fingers and attach the freezer without using force.

If the PBI has a 5V power supply (see section 1.1), the connec-
tion to the joystick port can be omitted. If the power supply is not
available on the PBI, the power supply wire must be connected to
pin 7 of the joystick port 2. Pin 7 is marked in the figure on the
right.

Caution: The power supply wire must never be disconnected while the Atari is switched
on, otherwise the Atari and/or the freezer can be damaged. If the power supply wire is
disconnected accidentally, the Atari must be switched off immediately.

13

1 Installation

1.3.2 Atari 800 XE, 65 XE and 130 XE

Attach the freezer to the cartridge port and the ECI port at the back of the Atari.

1.4 Turning the freezer on

1.4.1 Setting the basic configuration

Turn all freezer switches to the left to activate the following basic configuration:

• “CartEmu”: OFF, cartridge emulation off
• “FlashWrite”: OFF, write enable for flash ROM off
• “OldOS”: OFF, Oldrunner off
• “Stereo”: OFF, stereo POKEY mode off (not present)
• “Ramdisk”: OFF, 512k RAM extension off

CartEmu

FlashWrite OldOS Ramdisk

Freeze

Stereo

Figure 1.2: Switches on the TURBO FREEZER

1.4.2 Activating the freezer

Switch the Atari computer on and leave all other hardware switched off. If the READY

message of the BASIC does not appear after the usual short delay, but other suspicious
symptoms occur (system crash, black screen, smoke), switch the system off immediately
and look for the problem. If the Oldrunner is active, the message ATARI COMPUTER -

MEMO PAD is displayed instead of the READY message. If the cartridge emulation is active,
the green screen with the TURBO CARTRIDGE menu of the cartridge emulation is displayed.
In these cases verify that you have really setup the basic configuration according to section
1.4.1.

14

1.4 Turning the freezer on

If READY is displayed, simply press the “Freeze” button on the upper right to display
the freezer main menu. If nothing happens, the freezer is attached poorly, the power
supply wire (if present) is not connected correctly or the freezer broke down. By pressing
the [SPACE] key you can return from the freezer main menu to the BASIC. Now verify
if BASIC reacts to keyboard input. If this is not the case, then there is a problem. If
everything worked fine up to this point the freezer is ready.

If the freezer does not work correctly for any reason, send a letter or e-mail with the
description of the symptoms first before sending the freezer back. Because of the 100%
final assembly tests of every freezer it is practically impossible that the problem is due to
the freezer. Most likely the assembly or the Atari itself are the cause for the problem. It is
better to rule out these possible reasons before sending the freezer back for verification.
This prevents unnecessary delays and costs.

1.4.3 Creating the system disk

Right after the successful installation of the TURBO FREEZER a system disk should be
created. The system disk contains the flash program for writing to the flash ROM from
the Atari and the freezer software. With this disk the TURBO FREEZER can be reset
at any time to its state at delivery. In the state at delivery the flash ROM contains the
software required for creating the system disk as follows:

1. Switch the Atari off and connect a disk drive.

2. Turn the “CartEmu” switch right to activate the cartridge emulation.

3. After switching the Atari on the menu of the cartridge emulation should appear.

4. Press [D] to load the default settings and confirm them with [RETURN].

5. Now you are in the “TURBO FREEZER System Disk Writer” software. Insert an
empty disk in the disk drive “D1:” and press [RETURN]. The software now formats
the disk in medium density and writes the freezer software. If an error occurs (e. g.
due to a disk defect), the message ERROR is displayed and you have to insert a new
disk and restart the program. To this end simply confirm the restart program?

prompt with [Y]. To be on the safe side, a second copy of the system disk should
be created. Write protect this second copy and store it in a safe location.

6. After creating the system disk successfully, switch the Atari off and turn the
“CartEmu” switch back (to the left) again to its original position.

If anything goes wrong and you lose the system disk or overwrite it accidentally (yes,
things like that can happen sometimes), there still is the option to download an ATR disk
image of the system disk from the internet at http://turbofreezer.horus.com.

15

http://turbofreezer.horus.com

1 Installation

1.4.4 Activating the stereo POKEY mode (optional)

If the Atari has a stereo POKEY extension that is in stereo mode, the “Stereo” switch
must be turned right. This way the freezer also saves the hardware registers of the second
POKEY in the shadow RAM. When the freezer is activated, the second POKEY is disabled.
When the program is resumed, its correct previous state is restored again.

The general rule is that the position of the switch must correspond exactly to the
configuration of the Atari. Changing the switch position during operation is allowed, but
then the shadow RAM will contain wrong information. To fix this you have to press
[RESET] to trigger a re-initialization of the custom chip area by the operating system.
Alternatively change the switch position only when the Atari is switched off.

1.4.5 Activating the integrated 512k RAM extension (optional)

As a special feature the freezer contains an integrated, battery backed 512k RAM extension.
With this every Atari can be extended easier than ever from 64k to a total of 576k. And
since the RAM extension is battery backed, the data in the RAM extension remains intact
also after switching the Atari off.

Turning the “Ramdisk” switch right activates the RAM extension. A possibly present
internal RAM extension in the Atari is automatically deactivated then.

1.4.6 Using cartridges with the Atari XE

Because the freezer occupies the cartridge port on Atari XE computers, there is an
additional cartridge port present on the XE adapter board. With this you can continue to
use cartridges even though the freezer is attached. The cartridges have to be plugged in
the adapter board with the label towards the Atari. Never plug the cartridge in the wrong
way, otherwise the cartridge, the freezer and the Atari can be damaged.

There are cutouts around the cartridge port where a “plastic tray”, like those that are
present in the cartridge port of Atari XL computers, can be inserted. This relieves you from
the tedious unlocking some cartridges require. These “plastic trays” are unfortunately not
available separately. The only way to obtain one is taking a defective Atari XL computer
apart.

1.5 Extended configurations for experts in soldering

Warning: All of the following extensions are definitely only for experts in
soldering. If you are not such an expert strongly consider finding one rather
than trying this yourself. It is not worth ruining the poor Atari or the freezer
due to unhandiness.

1.5.1 Providing an internal power supply

Whoever owns an Atari 800 XL without power supply on the PBI can add this retroactively,
but this is difficult and requires good skills. If you are not confident enough you can simply

16

1.5 Extended configurations for experts in soldering

prolong the power supply wire of the freezer to the power supply inside the Atari. In both
cases the joystick port remains free for its actual purpose.

To discourage beginners, the following description of the modification is limited to the
absolute minimum. Experts will get along without problems. If you found an “expert”
and realize that he is groping in the dark, then this is the last chance to stop this obvious
amateur.

You can tap the power supply at the end of L1 from where a conductor path leads to
the shielded part. The ferrite bead is located within spitting distance to the power switch.
To this spot you can either solder the prolonged power supply wire of the freezer, or use
two wires to connect the 5V power to pins 47 and 48 of the PBI. These pins are the second
to last pins before pin 49 and 50. One is one the upper side of the board, one is on the
lower side of the board. Soldering to the lower side is much more difficult because the
Atari must be disassembled completely for this. In addition soldering to the ends of the
mating surface without having solder creeping to the active part of the mating surface is
finicky. The latter must be prevented in any case.

1.5.2 Installing a SYSTEM RESET key

For using the Oldrunner and for freezing programs which do not use interrupts, it is
beneficial to install a [SYSTEM RESET] key which triggers a non-maskable interrupt (NMI)
that cannot be disabled. The key button is installed such that pin 6 of the ANTIC can
be switched to ground. It is best to connect the key button to the corresponding pull-up
resistor. You can tap the pin at best at the pull-up resistor. In the Atari 800 XL and all
Atari XE models this resistor is R1. In the Atari 800 XL it is R34, and in the Atari 1200
XL it is R7.

Warning: In addition to the general warning from the first section it applies
here that mechanical works are required to install the key button. These works
require additional tools and manual skills to achieve a good-looking result.

1.5.3 Providing compatibility with 1MB RAM extensions

The TURBO FREEZER uses the refresh line to stop the Atari. Unfortunately this leads
to compatibility problems with all internal RAM extensions that use an own refresh logic
based on the refresh signal of the ANTIC. This applies mainly to 1MB RAM extensions
such as the Newell RAM extension. Most of the 256k RAM extensions and the extended
memory of the Atari 130 XE are not affected. The problem can be solved easily with two
additional components. You require a small signal Schottky diode, e. g. of type “BAT 85”
and a 4.7kOhm resistor.

Warning: In addition to the general warning from the first section it applies
here that the pin of the ANTIC must be treated with special precaution. The
pin breaks very easily if it is bent too much.

After opening the Atari pin 8 of the ANTIC must be bent up. The wire that leads from
pin 8 to the RAM extension must be unsoldered first. If the ANTIC is socketed, pull the
ANTIC out of the socket and bend the pin up carefully. It is sufficient to bend the pin up
only far enough that it stays outside of the socket when the ANTIC is put back into the

17

1 Installation

socket. If the ANTIC is soldered to the board, cut the pin right above the board with a
mini wire cutter and bend it up carefully.

At first solder the diode between the bent up pin 8 and pin 8 of the socket (or the Atari
main board if there is no socket). The cathode (marked with a ring on the housing) must
be connected to the ANTIC; the anode must be connected to the socket. The most simple
solution for this is to solder the diode directly to pin 8 of the ANTIC and to solder a thin
wire from the anode to the lower side of the board and connect it there to pin 8.

One end of the resistor must be connected to the anode of the diode; the other end of
the resistor must be connected to pin 21 of the ANTIC (+5V). Now the wire that was
unsoldered from pin 8 of the ANTIC can be soldered again to pin 8 of the ANTIC.

18

2 Usage

Did you ever feel annoyed by a game that is really great but has no pause function that
can be activated at any time? Or by games of the frustrating kind where you have to start
all over again at the beginning after you lost all lives and then have to play forever to get
to the point that you had already reached before? Or those games where the action only
starts in the higher levels but where you have to waste huge amounts of time reaching
these levels? In this case the freezer is exactly the right thing for you: a program can be
frozen at any time in any situation and can be saved to any mass storage. From there it
can be loaded at a later point in time and can be resumed at exactly the point where it
was frozen. And this can be repeated as often as required, so it is no problem to spend a
hundred lives to master a challenge though you only have one or two lives left.

In order to really be fun, a freezer must be available at any time, must have resident
software (so it can work without cumbersome loading from disk or cassette) and must work
fully automatic and within seconds. Therefore no cost cutting measures, like for example
partly reconstruction of the hardware registers by user input or loading the freezer software
from disk, were applied. Instead of applying such dubious cost cutting measures, as they
can sometimes be seen in the freezers for other computer systems, the TURBO FREEZER
represents the best possible solution that can be achieved with today’s technology. And
the invested effort was not in vain, as the result proves.

If you know the cumbersome primitive freezers of other computers you will simply be
excited by the easy and instant usage of the TURBO FREEZER. For example freezing a
game, saving it to the RAM extension and resuming the game three seconds later takes no
more than three keystrokes. The same is true for loading and resuming the game from the
RAM extension later on.

But the freezer can do much more. It is possible to perform any conversion between
cassette and disk. Users of cassette tape drives who recently bought a disk drive can take
their beloved software collection with them on disk. Users of disk drives can now use
programs that are only available on cassette without tedious loading or can save money by
buying the cheaper cassette versions.

And there is one more important point. The TURBO FREEZER is a freezer which
has a DOS and debugger built in. They are always available and can be used without
damaging the frozen program. Full disks or other fatal events are now no longer a problem
anymore – even not when using application programs without DOS functions. The same
is true for the evil bugs which can never be located without insight into the hardware
registers and the unmodified system state.

19

2 Usage

2.1 Starting the freezer main menu

After pressing the “Freeze” button the program is frozen when the next interrupt occurs
and the freezer takes over control of the Atari. From the freezer main menu all other
functions can be reached. Resuming the frozen program is possible by pressing [SPACE].
The program will continue to run from exactly the same position where it was frozen. The
freezer main menu offers the following options:

[SPACE] Resume frozen programm

[RESET] Perform cold start and deactivate freezer

[S] Save frozen program to disk or cassette

[F] Save frozen program to freezer RAM

[R] Save frozen program to RAM extension

[E] Load and start frozen program from disk or cassette

[C] Load and start frozen program from freezer RAM

[X] Load and start frozen program from RAM extension

[W] Swap frozen program with program in freezer RAM and start

[A] Swap frozen program with program in RAM extension and start

[Z] Clear RAM under the OS ROM

[D] Start debugger

[K] Start menu of the cartridge emulation

[Shift]+[K]

Start menu of the cartridge emulation without clearing the RAM (warm start)

[Shift]+[SPACE], [E], [C], [X], [W], [A]
Like above, but clear player/missile collision registers before resuming

[Control]+[E], [C], [X], [W], [A]
Like above, but frozen program is only loaded and not started

2.2 Freezing and resuming a program

In principle, any program can be frozen at any point even during a disk or cassette
operation. Yet this is not recommended as this operation will remain incomplete. After
resuming the program the operation system has the opportunity to retry the disk operation
but this is not safe. Retrying an operation on the cassette is even impossible for the
operation system since the cassette tape drive is simply too “stupid”. Therefore it is better
to freeze programs only when there is no operation with peripherals in progress.

In very rare cases nothing happens when the “Freeze” button is pressed and the program
continues unaffectedly. This is the case when the program does not use interrupts at all.
It’s only possible if the program is very simple like for example converted Apple programs
which do not really use the capabilities of the Atari. To also freeze such programs you

20

2.3 Saving a frozen program

can install a [SYSTEM RESET] key in the Atari as described in section 1.5.2. The interrupt
triggered by this key can by no means be suppressed, so there is no counter measure
against the TURBO FREEZER anymore.

When a frozen program is resumed with [Shift]+[SPACE], the player/missile collision
registers are cleared before control is handed over to the frozen program. Usually this
function is not required, but in some games this prevents losing a life immediately after
resuming. When loading frozen programs the same function is also available. Simply press
[Shift]+[E] / [C] / [X] / [W] / [A] to apply it.

When a frozen program is loaded from disk, cassette, freezer RAM or RAM extension it
is resumed by default. When loading a frozen program with [Control]+[E] / [C] / [X] /
[W] / [A] it will not be resumed automatically. Instead you stay in the freezer and can for
example change memory locations before resuming. This comes very handy if you search
for the memory location that contains the number of lives, the amount of energy and so
on. To this end you can freeze the program and save it immediately. Then you change
the memory location and resume the program. If you used the wrong memory location,
simply activate the freezer and load the frozen program with [Control]+[E]/[C]/[X]
and try the next memory location. This way you have the same starting point and you
don’t have to worry about undoing the previous changes.

2.3 Saving a frozen program

The functions [S], [F], [R] can be used to save frozen programs to external mass storage
like cassette or disk ([S] key), to the RAM extension ([R] key) or to the freezer RAM
([F] key). When using [S] a submenu will prompt if the frozen program shall be saved to
cassette, as a boot disk or as a single file. Insert a cassette resp. disk before confirming
your choice. When saving as a single file to a disk an additional menu will prompt for the
file name.

Caution: When you save the frozen program as a boot disk, the disk that is present in
“D1:” will be overwritten directly. All data possibly present on the disk will be lost in this
case.

If you simply press [RETURN] without entering a file name, the file name CORE for “core
dump” will be used. As a special feature wild cards can be used to overwrite an existing
file. If you omit the D:, D1:, D2: etc. at the begin of the file name, D1: will be used
automatically. The freezer supports up to 8 disk drives D1: to D8:.

In order to achieve the maximum possible speed the freezer menu is sometimes disabled
during I/O operations. By accepting that the screen may “jump” when it’s switched back
on again, saving to the RAM extension only takes half of the time, what legitimates this
dirty method.

21

2 Usage

2.3.1 Adapting the boot disk loader

When a frozen program is saved as boot disk, the freezer also writes a loader to the disk.
This inherently will not work with every program because the loader itself requires about
2k of memory. If the frozen program requires already the complete memory of the Atari,
it will not work together with the loader.

By default the loader uses the area between $C000 and $C6FF. This normally guarantees
correct operation with all programs that only require 48k of memory. The start address of
the loader can be adapted easily in case a program still runs into problems.

The first byte of the boot sector contains the start page of the loader (by default $C0).
Adapting this byte is very easy with the TURBO FREEZER. Start the debugger, load
the first sector, change the byte to the desired value and write the sector back to the disk.
Please note that only values from $05 to $C9 and from $D8 to $F9 are allowed. If you use
other values, you will obtain a BOOT ERROR when booting the disk. The following sequence
of commands can be entered in the debugger to adapt the start page of the loader for
example to $F0:

SR 1

C D700<F0

SW 1

2.3.2 Freezing a program that loads parts later

Freezing programs that load parts later is of course always possible. The only thing to
remember is that the original disk must be inserted into the disk drive after resuming
the program and before any further operation is performed in the running program. This
of course wears out the disk over time. Therefore it is desirable to have a backup disk
at hand so the original disk can be locked away in a safe location. But even with floppy
speeders that include a copy function not all new programs can be copied by far.

The TURBO FREEZER does not remove the copy protection from the original disk, it
only saves the current program state. In order to resume from this state later as often
as you like, the original copy protected disk must be inserted into the disk drive again,
before the program is resumed. If you use an additional disk to save the frozen game state,
the original disk should be equipped with a write protection. This prevents accidentally
overwriting the original disk.

If the game loads additional parts from multiple disks without copy protection (e. g. an
adventure), it is advisable to copy these disks and use the copies instead to not wear the
original disks out.

22

2.4 Swapping the frozen and a saved program

2.4 Swapping the frozen and a saved program

The swap function in the freezer main menu can be used to swap the current frozen
program with the program that was saved to the freezer RAM ([W] key) or the RAM
extension ([A] key) before. This way you can jump quickly between two different programs.
You should be sure to really have a frozen program in the freezer RAM resp. in the RAM
extension, otherwise the Atari will crash when resuming.

The modifier keys [Shift] for clearing the player/missile collision registers and [Con-

trol] for loading without starting automatically can be used with the swap function just
like with the normal functions for resuming.

2.5 Clearing the RAM under the OS ROM

Because there are programs which require and also use 64k RAM, the freezer must also
take the RAM under the OS ROM into consideration. After switching the computer on,
this area is filled with useless random data. Because this data is ineligible to compression,
a certain inefficiency and waste of space are the consequence when saving 48k programs
to an external medium. In order to avoid this, the RAM from $C000. . . $FFFF can be
cleared with the function [Z], in case the program only uses 48k RAM. The result is a
reduction of the file size of about 25% to 50% and consequently shorter loading times.

The function can be used before booting the program or before saving the program. The
first alternative is recommended if you are not completely sure that the program really
does not store anything in this RAM area.

2.6 Starting debugger and DOS

The function [D] starts the built-in debugger with DOS functions. The debugger uses a
command line and the complete screen, so controlling it via a menu would not be sufficient.
Yet no RAM in the Atari is used or modified by this function. The states of the frozen
hardware registers of course also remain intact. The complete description of the debugger
and the DOS function can be found in chapter 3.

2.7 Starting the menu of the cartridge emulation

The function [K] starts the menu of the cartridge emulation. This function is only available
if the “CartEmu” switch or the “FlashWrite” switch (or both) are on, i. e. are turned
right. Otherwise the cartridge emulation is completely deactivated and consequently
the menu of the cartridge cannot be started. The complete description of the cartridge
emulation can be found in chapter 6. The freezer performs the following steps when the
menu of the cartridge emulation is started:

23

2 Usage

• Leave the freezer main menu
• Activate the menu of the cartridge emulation
• Disable IRQs and NMIs
• Enable the OS ROM
• Set the return address to $E477 (cold start)
• Resume as usual (corresponds to pressing [SPACE])

With the function [Shift]+[K] a warm start is performed instead of a cold start (i. e.
the return address set to $E474). This can be useful to keep the content of the internal
RAM of the Atari when starting a module.

24

3 Debugger and DOS

Pressing [D] in the freezer main menu takes you to the built-in debugger with DOS
functions.

Commands are entered in the command line at the bottom of the screen. Editing inside
the command line is possible in the usual manner. The cursor cannot leave the command
line. Using the arrow keys [CURSOR UP] and [CURSOR DOWN], the previous commands can
be recalled. The freezer keeps the last 4 commands that were entered.

The debugger also supports the unfortunately little used [HELP] key. Pressing this key
displays a short help with an overview of all commands. Using the keys [1], [2]. . . you
can navigate to the individual help pages. Use [DEL] to display the previous page and
[SPACE] or [HELP] to display the next page. Every other key ends the help display. The
content of the command line remains unchanged when you enter the help. This means
you can also open the help while entering a command if you forgot the exact syntax.

3.1 Disk Operating System (DOS)

Who didn’t encounter the following situation: you have spent the past 3 your editing your
program and now it’s time to save it again. But instead of the expected success message
you get a File locked or Disk full error message. Now it’s hard to know what to do.
Starting the DUP via DOS will make you lose your program because you didn’t activate
“MEM.SAV”, as it takes forever to execute.

As the freezer is capable of stopping any program at any point, it suggests itself to
also include a DOS with the most commonly used commands. Then it’s no problem to
handle the situation and continue the frozen program afterwards. The built-in DOS of the
TURBO FREEZER contains all required functions to deal with the situation mentioned
above. It supports single-, enhanced-, and double-density and is fully compatible to DOS
2.0 and DOS 2.5. The functions of the Turbo 1050 floppy speeder are fully supported, as
well as the high SIO speed of Happy/Speedy compatible disk drives and XF-551 drives.
Also any other tuned or standard disk drive can be used as well.

A disk command consists of a three character long command or a command followed by
one or more spaces and a filename. Some commands also allow for specifying an option
that may be added to the command, separated by a slash. The command must start
immediately after the prompt. And besides the before mentioned space, no additional
spaces must be entered. File names may contain the wildcard “*” replacing any character
sequence, as well as “?” replacing any single character. Illegal commands will simply be
ignored and will not cause an error message. Error messages are only be displayed if they
were caused by the execution of a command.

25

3 Debugger and DOS

3.1.1 Executing commands

If the prefix D: is not included in a file name, the default D1: will be used. RAM disks
are not supported, as they always depend on the DOS and RAM disk driver that is used.
Because of technical reasons PBI devices can unfortunately also not be used. Wildcards
may also be used in the destination file names. In this case, the first matching file name is
used. The only exception is the rename command [REN] which will be described in the
next section.

The commands DEL, LOC, UNL, and REN for manipulating directory entries may operate
on multiple files in a row. To prevent unwanted actions, an option has to be added to have
the command be effective on multiple files with similar names. If no option is added, only
the first matching file will be processed. The option /Q will ask for confirmation with [Y]

for every matching file name. Pressing any other key than [Y] will skip the file. Stopping
the command is possible using the [BREAK] key. And if you’re sure, use the option /A to
process all files with matching file names without confirmation. Errors that occur during
execution will be displayed in readable text and will result in the return to the freezer
main menu.

3.1.2 Command summary

The commands are listed here in table form only, as they are not new or unknown.
Beginners may look up the commands in any DOS manual, like the one that comes with
the Atari 1050 disk drive.

DIR List directory with all files

DIR filename

List directory with certain files

DEL filename

Delete file

FMS Format in single density

FME Format in enhanced density

FMD Format in double density, requires special or enhanced disk drive

LOC filename

Lock file
UNL filename

Unlock file
REN filename,newname

Rename file
LOA filename

Load object file

LOA filename/N

Display object file load address(es) but do not load

LOA filename,start

Load raw data file to address start, ignore COM header

26

3.1 Disk Operating System (DOS)

SAV filename,start,end

Save object file with the memory content from address start to (and including)
end

SAV filename/N,start,end

Save file without COM header (raw file) with the memory content from address
start to (and including) end

3.1.3 Characteristics of specific commands

Some commands have specific characteristics compared to standard DOS commands. These
characteristics are either improvements or are the logical result of working in a freezer
environment.

While renaming files with REN command, the specification of the new file name may
contain arbitrary wildcards. The wildcard characters are replaced by the characters from
the original file name. This allows for working on groups of files efficiently, not being
restricted to the primary or secondary name (i.e. the extension) of the file.

Object files can be loaded using LOA. The memory area to which the file is loaded is
also displayed. In case of compound files, all memory areas are displayed. The complete
64k memory area can be used as target. This includes loading directly into the hardware
registers, which are currently frozen. The loaded program will not be started, to prevent
conflicts with the memory management logic of the freezer in case multiple segments are
loaded.

Adding the option /N to the load command will display the memory area into which the
program would be loaded but will not actually load the data into memory. This is useful
in case you are only interested in the memory location to which an object file would be
loaded, i. e.
LOA FONT.COM/N

The command LOA can also be used to load raw data (without COM header). In this
case the address to which the data shall be loaded must be specified, i. e.
LOA FONT.DAT,8000

3.1.4 Error messages

When using the DOS and the load and save functions of the freezer for frozen programs,
errors can occur. The corresponding error messages are displayed as plain English text.

FILE NOT FOUND

The file could not be found
FILE# MISMATCH

The (internal) file number does not match, the file structure is likely to be
damaged. Rescue the other files if possible and format the disk

BAD DISK I/0

The command cannot be executed due to a bus or disk error or because the
write protection is active

NO DRIVE The disk drive does not respond

27

3 Debugger and DOS

DISK FULL

The disk is full
FILE LOCKED

The file is locked
DIRECTORY FULL

The directory is full (at most 64 files per disk)

3.2 Debugger

A debugger is used by machine language programmers to display, alter and improve object
code and other memory contents directly in the computer memory. Doing this in the
environment of a freezer brings certain advantages. Because of the way the freezer works,
there are also some limitations that may be circumvented by using the right procedures.

3.2.1 Access to memory and hardware registers

Without a doubt, the biggest advantage is the possibility to work with the frozen system
state. Doing this creates the impression of having a second computer, that’s linked into
the first, stopped Atari. It enables you to “look into” and change the stopped Atari and
to resume any time. A debugger without freezer always has severe problems because of
its own memory usage and because the I/O operations of the debugger itself change the
system state. A programmers’ term for this is “trashing”, meaning turning the content of
the system into “trash”.

A standard debugger requires RAM for its own operation and will trash the data that
was put there by the program that’s being looked at. And even if the debugger is more
sophisticated (and comes with its own RAM), it will still trash the hardware registers of
ANTIC, POKEY and GTIA. There are no OS shadow registers for player missile graphics
and sound registers and the existing OS shadow register will be deactivated by many
programs anyway. As a result of the trashed hardware registers, it will be a lot of work,
if even possible, to resume a program. And apart from this, debuggers without a freezer
don’t have the ability to display the content of the non-readable (write-only) hardware
registers. So even if the register contents are not trashed by the debugger, the values in
the registers remain unknown.

Using the built-in debugger of the TURBO FREEZER, all information about the system
state is available. The contents of the hardware registers (i.e. what has been written there,
not the status returned by a read operation) can be viewed in the I/O area and may be
changed, without having to fear a system crash. The changes are applied only to the
frozen program. You can work with the complete RAM area (even the RAM under the
OS ROM), without trashing or fearing a crash.

In addition, there are various advantages resulting from running in the environment
of the TURBO FREEZER. The load and save functions and the DOS functions allow
for instantaneous testing and retrying, without lengthily reloading a program. And if
the change works not as expected, it may be undone instantly without problems. Using
this, even horrendous code monsters that overwrite parts of the DOS and that cannot be
processed in a simple way, are not frightening anymore.

28

3.2 Debugger

The software of the original TURBO FREEZER from 1987 had some disadvantages,
among other reasons due to size constraints. Changes were always only applied to the
frozen system state and changes to the hardware registers were only visible after resuming.
This made it hard for example to work with the RAM extension.

The extensions of the software that even been implemented over time have meanwhile
removed the majority of the original constraints. Using the direct I/O mode, the debugger
can access extensions in the custom chip area and bank switching modules directly. And
the PB command allows direct control of the access to the RAM extension, the OS ROM
and the RAM under the OS ROM.

3.2.2 Command summary

The set of commands is kept minimal and is aligned with the Atari “Editor Assembler
Cartridge” which makes it similar to many other debuggers. Hence a tabular summary
of the command should suffice. The commands must not contain any spaces and must
start immediately behind the prompt. Only the command line can be used for input.
All changes are logged in the output area. All entries are in hexadecimal notation. By
omitting a value, memory locations or registers may be left unchanged.

Example: C100<0A,,4D will change the content of the memory location $100 to $0A
and of the memory location $102 to $4D. After this, the internal address counter will point
to $103. The content of the memory location $101 remains unchanged.

For all commands, the address may be omitted and the debugger will use the internal
address counter or an end address that will yield a reasonable output. The output can be
stopped at any time by pressing [S] and resumed by pressing [Q].

Q Go to freezer main menu

D start Display 8 bytes plus ATASCII characters starting at address start

D start, Display 128 bytes starting at address start

D start,end

Display memory content from address start to end

I start Display 8 bytes plus characters in internal Atari screen code starting at address
start

I start, Display 128 bytes starting at address start

I start,end

Display memory content from address start to end

L start Disassemble starting at address start, display one screen page

L start,end

Disassemble from address start to end

DL start Display display list starting at address start

DL start,end

Display display list from address start to end

C start<byte1,byte2...

Change memory content starting at address start

29

3 Debugger and DOS

VEC Display OS vectors

HAT Display handler table

M Display memory usage map

PB Display content of the memory management register PORTB (controls access to
RAM extension, OS, BASIC)

PB<value Set content of the memory management register PORTB to value

DIO Display direct I/O mode

DIO<value

Activate/deactivate direct I/O mode, use with caution

R Display registers

R<value1,value2...

Change registers

G start Set return address for resuming to start

/start,end/value...

Search for value... in the memory area from address start. . . end

BM start,end,target

Move the memory area from start...end to
target...target+(end−start)

BS start,end,value

Set memory area from start...end to value

BC start,end,start2

Compare memory area from start...end to the memory area starting at
start2

PR<value Activate/deactivate printer output

; TEXT Print a text or comment

SR number

Read sector number

SW number

Write sector number

SIO ... Execute SIO command

SIOR Reset high speed SIO routine

V Display interrupt and content of the register VCOUNT at the time of the freeze

V<value Set the content of the register VCOUNT for the time when program will be
resumed

a COMMAND...

AtariSIO remote control

VER Display freezer software version

30

3.2 Debugger

Remark: With the exception of the spaces immediately following the command, all
spaces in the above list are only there for readability and must not be entered with the
command. The program counter (PC) cannot be changed using R< due to its special
handling. Use the G command to change its value.

3.2.3 Input of values (hexadecimal, decimal, internal code)

Addresses and byte values are input in hexadecimal notation by default. Use the percent
sign “%” as a prefix to enter an address or byte value as decimal number. The following
command corresponds to the statement “POKE 710,10” in BASIC.

C%710<%10

Byte values can also be given in ATASCII or internal Atari screen code. For ATASCII,
the single quote “’” must be used as prefix, for screen code the at sign “@” must be used.

C0600<’H,’a,’l,’l,’o

C9C40<@S,@c,@r,@e,@e,@n

3.2.4 Input of vectors

For working with vectors (i. e. display list or interrupt vectors) an additional variant for
specifying addresses is available. If the prefix “*” is used for an address, the 2 byte vector
at that address is evaluated and the content of the vector is used as effective address. This
can be used for example to display the current display list very effectively.

DL*230

DL*%560

3.2.5 Access to extended memory, RAM, ROM

The debugger offers full control over the memory management functions of the Atari
XL/XE when accessing the memory content. The memory management unit is controlled
by the register PORTB ($D301) of the PIA. This way it is possible to read and change
the content of the RAM extension ($4000. . . $7FFF) or the RAM under the OS ROM
($C000. . . $CFFF, $D800. . . $FFFF) without problems.

The PORTB control only refers to the access from within the debugger. Changes do not
affect the frozen program. To change the state after resuming, the frozen content of PORTB
must be changed using C D301<byte.

When the freezer is activated, the current value of PORTB is used as default for the
debugger. That means you see the same state in the debugger as the frozen program would
see. The PORTB control can be displayed and changed with the PB command:

PB Display current PORTB value

PB<value Set new PORTB value

31

3 Debugger and DOS

If you would like to access the RAM under the OS ROM, enter PB<FE to set bit 0 of
PORTB to 0. With PB<E3 access to the first bank of the RAM extension in Atari 130 XE is
activated. The content of PORTB at the time of the freeze can be displayed using D D301 –
provided it was not changed already using C D301<value.

The access to the frozen PIA registers ($D3xx) is subject to a special handling in the
freezer. Normally, the values of the PIA registers are repeated every 4 bytes in the Atari.
In the debugger, 8 bytes are displayed instead.

$D300, $D301
are the normal registers PORTA and PORTB

$D302, $D303
contain the data direction registers for PORTA and PORTB. They are normally
accessible via PORTA resp. PORTB if bit 2 of PACTL / PBCTL is set to 0.

$D304, $D305
contain the values of PACTL resp. PBCTL which are normally accessible via the
address $D302 resp. $D303.

$D306, $D307
are unused

3.2.6 Display display list

The DL command prints the ANTIC menmonics as described in the ANTIC data sheet,
starting at the specified memory address.

BLK x x blank lines

CHR x Text mode x

MAP x Bitmap mode x

JMP adr Jump to given address

JVB adr Wait for vertical blank, then jump to given address

Right to the mnemonic the following options are printed, if present:

LMS adr Load memory scan counter (pointer to the current screen memory address)

H Horizontal scrolling enabled

V Vertical scrolling enabled

I Trigger display list interrupt (DLI)

3.2.7 Search in memory

The search command can be used in various manners. Use /start/value1,value2...

to search the specified byte sequence starting at the specified start address. At the first
occurrence of the byte sequence, the search stops and prints the address. The internal
address counter is set to the found address, so you can disassemble from that address
immediately using the L command. The search can be resumed with the / command.

32

3.2 Debugger

The byte sequence can consist of up to 8 bytes, which is more than sufficient in most
cases. It’s also possible to omit bytes from the sequence. These bytes are ignored by the
search. /1000/8D,,D4 will find the first address starting from $1000 that contains the
command “STA $D4xx” to write a byte into the ANTIC.

The byte sequence can also contain a bit mask. To do this, the separator & followed
by a bit mask must be appended to the byte, like for example 03&0F. The content of the
memory will combined with the bit mask using AND and will then be compared with the
byte value from the byte sequence.

If an end address is specified in addition to the start address, all addresses where the byte
sequence is found are printed. That means the search does not stop at the first occurrence
when entering for example /start,end/value1,value2.... Many times, the complete
memory is to be examined. Therefore there is the very short variant //value1,value2...
which is identical to /0000,FFFF/value1,value2....

If the byte sequence is long or the memory area is large, the search may take several
seconds. Using the [BREAK] key, the search can be interrupted at any time. It can then
be resumed with the / command.

3.2.8 Execute SIO commands

The commands SW, SR, SIO as well as the built-in DOS use an internal sector buffer. The
memory manager mirrors it to the address $D700 in the frozen address space, where it can
be edited by the debugger. Physically it is not present at that address. To read a sector
from a different drive than D1: or to write it there, just prepend the sector number with
Dx:.

SR 100

SR D2:200

SW D3:300

With the SIO command, arbitrary commands can be sent to the SIO, just like using
the SIO vector $E459. The values have the same meaning as the memory locations
$0300. . . $030B in the Atari. The maximum allowed value for length is $0100.

SIO device, unit, command, direction, timeout, length, daux

The SIO command retains the parameters of the previous execution, so they can be
omitted in the next SIO command. If all parameters are omitted, the last SIO is repeated.
At the beginning, the parameters are set to “Get Status” for D1:, so nothing wrong can
happen in case SIO is entered without parameters.

In any case the SIO should always be used with caution and the parameters should be
verfied thoroughly, because otherwise formatting the wrong disk may happen quickly.

3.2.9 Display interrupt and VCOUNT

The freezer can freeze the running program when an interrupt occurs. To this end the
freezer reroutes the interrupt vector and thereby forces the CPU to enter the freezer. The

33

3 Debugger and DOS

V command displays the type of interrupt (IRQ or NMI) that caused activation of the
freezer, together with the original value of the corresponding interrupt vector. Additionally
the value of VCOUNT at the moment of the freezer activation as well as the calculated value
of VCOUNT at the moment the interrupt occurred are displayed. This command was mainly
introduced to test the freezer software and may be of little interest for most users. But
here’s a short description of the significance and origin of the values.

When the freezer is activated, it maps the ROM with the freezer software into the
address space of the CPU and “reroutes” the high byte of the interrupt vector to the
ROM’s address, so the freezer software is started. Because the low byte is not changed,
there’s a full page of “NOP” instructions at the start of the freezer software. Therefore it
may be the case that the Atari has to execute through several “NOP” instructions to get
to the part that will read the value of VCOUNT.

Using the low-byte of the interrupt vector, the software tries to calculate the amount
of time it took to get through the “NOP” instructions and adjusts the VCOUNT value
accordingly. This way the program can be resumed at exactly the same position where
it was interrupted. This calculation is not 100% correct and may vary according to the
graphics mode. In the very rare case that the value is not correct and causes problems,
the command V<value can be used to set the VCOUNT value manually.

3.2.10 Activate direct I/O mode

Changes to hardware registers only become effective after resuming, because in the
TURBO FREEZER only the frozen system state is manipulated, as opposed to normal
debuggers which manipulate the real system sate. For experts the TURBO FREEZER
offers the possibility to activate the “direct I/O mode” and manipulate the real system
state also in the debugger.

DIO Display current mode: 0 = deactivated (default), 1 = activated

DIO<0 Deactivate direct I/O mode

DIO<1 Activate direct I/O mode

Caution: When direct I/O mode is active, the freezer is “bypassed” and it becomes
likely to make mistakes. The freezer will not notice any changes to the hardware registers
in direct I/O mode. Therefore the same changes should also be performed again with direct
I/O mode switched off. Otherwise the freezer will overwrite the changes when resuming.

3.2.11 Display version number

The command VER prints the version number and the date of the freezer software in the
format 3.10 2012-11-09.

3.2.12 Display OS vectors

The VEC command displays the most important OS vectors of page 0 and 2 as an overview.
The output contains the symbolic name of each vector and its value.

34

3.2 Debugger

DOSINI 000C: 0000 CASINI 0002: FFFF

DOSVEC 000A: F223

VPRCED 0202: C0CD VINTER 0204: C0CD

...

3.2.13 Display handler address table

The HAT command lists the entries of the handler table ($031A. . . $033A). It displays the
address of the entry, then the 3 bytes of the entry followed by the device letter and the
address of the handler table (resp. “-- 0000” if the entry is empty).

031A 50 30 E4 P: E430

031D 43 40 E4 C: E440

0320 45 00 E4 E: E400

3.2.14 Display memory usage map

The command M displays a map of the memory which indicates used and unused memory
pages. If a page contains only zeros, a period “.” is displayed. If it contains at least one
non-zero byte, a star “*” is displayed. This is useful for example when searching for an
empty memory area for the boot loader (see section 2.3.1).

3.2.15 Activate printer output

Printer output is controlled with the command PR<value. Values from 1 to 8 activate the
output to printer P1: (default printer) to P8:. The value 0 deactivates printer output. Via
PR, the current state of the printer output is displayed on the screen. If printer output if
active, everything that is displayed on the debugger screen is also printed on the specified
printer in parallel. This is a handy way of logging debugger sessions.

Especially for longer debugger sessions it can be very useful to insert comments into
the logs. This can be achieved easily with the “;” command of the debugger. Everything
that follows the semicolon is printed in the debugger window (and hence, if printer output
is activated, also on the printer). This way you no longer need to grab pen and paper
frequently and the logs of the debugging session will be understandable even months later.

3.2.16 Control AtariSIO remotely

Using the a command, remote control commands can be sent to AtariSIO. This enables
a complete remote control of AtariSIO without loading and additional program. More
information can be found in the AtariSIO manual.

35

4 512k RAM extension

The built-in RAM extension of the TURBO FREEZER is compatible with the wide spread
Rambo/ATARI-Magazin extensions. Bit 4 of PORTB activates access to the extension (0
= extended RAM at $4000. . . $7FFF enabled, 1 = internal Atari RAM enabled). The
bits 2,3,5,6 and 7 select one of the 32 16k banks. A separate ANTIC access, as it is present
in the Atari 130 XE and some other extensions, is not supported. On the one hand, the
required HALT signal is not available on the PBI bus. On the other hand, there are only
very few demos which require this mode. And meanwhile most of them have been patched
to work with RAM extensions that do not support separate ANTIC access.

The following restriction may arise with programs which require a RAM extension with
separate ANTIC access. If a RAM extension which supports separate ANTIC access
is present in the Atari, activating the built-in 512k RAM extension of the freezer may
cause malfunction. If ANTIC access to the RAM extension is enabled (via bit 5 of
PORTB), but CPU (or combined CPU/ANTIC) access is disabled (via bit 4 of PORTB),
the ANTIC will access the internal RAM extension instead of the RAM extension of the
TURBO FREEZER. The best solution is to prevent this situation by disabling either of
the RAM extensions.

37

5 Oldrunner – Atari OS Rev. B

The Atari 400/800 is the only 8-bit home computer class that contains a well-designed
and structured operating system (OS). This allows for changes, extensions and improve-
ments without the need to adapt current programs. That’s why Atari could use a more
sophisticated OS in the later Atari XL/XE series. Annoyingly, there are programs (from
1980-1983) that don’t run on the XL series. This is the fault of the programmers who did
not stick to the official programming guidelines.

To be able to use these incompatible programs on the Atari XL/XE, so called“Translator”
disks were published. They disable the OS ROM and copy the old OS version “Rev. B”
into the RAM which is located under the OS ROM. Although this works well in most
cases, it’s time consuming and unpleasant to always have to load this alternative OS. Only
a hardware solution where the old OS is stored in a kind of ROM that is always available
and unmodifiable will work with all incompatible programs. Unfortunately these so called
“Oldrunners” normally require modifications within the Atari.

With the TURBO FREEZER it is now possible to implement an Oldrunner without
modifications within the Atari. The memory management logic makes this possible. The
Oldrunner can be activated and deactivated using the switch labeled “OldOS”. Move the
switch to the right position ON to activate the Oldrunner. Move the switch only while the
Atari is off. Otherwise the content of the RAM will not match the required content of the
newly selected OS version and the system will crash.

For various reasons, it’s best to only activate the Oldrunner if it is the only way to get
a program to work. While the Oldrunner is active, there is no built-in BASIC, no RAM
extension and no warm start. Pressing the [RESET] key while the Oldrunner is active
always (!) triggers a cold start and the content of the RAM will be lost. The key which
corresponds to the [RESET] key of the Atari XL/XE was called [SYSTEM RESET] in the
Atari 400/800 and triggered a non-maskable interrupt (NMI). It’s not very difficult to
retrofit this key (see section 1.5.2) but it involves opening the Atari and is therefore rather
an expert task. Besides that, this key is not really needed anyway because most of the
incompatible programs are games which have mapped the [SYSTEM RESET] to a cold start
or a system crash. This is the ridiculous attempt to annoy the “crackers”, but misses the
point and only annoys the user instead.

39

6 Cartridge emulation

The cartridge emulation is another very powerful feature of the TURBO FREEZER.
It is capable of emulating standard 8K and 16K modules as well as bank switching
modules according to the AtariMax/MegaMax and OSS standards. Additionally the new
SpartaDOS X (Ultimate1MB bank switching, up to 512k) can be emulated. Also combined
usage of SpartaDOS X together with an OSS module is allowed.

The cartridge emulation can use all unused memory of the flash ROM (960k) and the
freezer RAM (384K). This means the TURBO FREEZER gives you instant access to up
to 168 different modules. The cartridge emulation is not only interesting for those who use
many different cartridges and who became tired of changing the cartridges all the time
(which heavily strains the cartridge port), but also for those who develop cartridge based
software. Because the module data can not only be stored in the flash ROM but also in
the freezer RAM, changes to the data can be performed and tested within seconds. Since
the freezer RAM is battery backed its content is not lost after switching the Atari off. This
means the freezer RAM can be used for storing permanent data, just like the flash ROM.

6.1 Basics

Leveraging the full potential of the cartridge emulation requires knowledge about the
following details of the internal operation.

6.1.1 Bank numbers

The flash ROM is internally divided into “banks” of 8K. With 1MB flash ROM, there are
128 8k banks with the bank numbers 0. . . 127 available. The topmost 64k of the flash
ROM are used by the freezer software and cannot be used for cartridge emulation. This
leaves the banks with the numbers 0. . . 119 for cartridge emulation.

In the 512k freezer RAM the topmost 128k are reserved for the freezer software, leaving
384k in the banks 0. . . 47 for the user. Snapshots are stored in the banks 48. . . 55 of
the freezer RAM. If you don’t use snapshots, you can use these banks also for cartridge
emulation.

16k modules use 2 consecutive 8k banks. Their data must be aligned to a 16k boundary,
i.e. an even bank number. If a 16k module is for example stored in the banks 2 and 3, then
bank 2 will be visible at $8000. . . $9FFF and bank 3 will be visible at $A000. . . $BFFF.

512k modules, SpartaDOS X and modules with TURBO FREEZER 2005 bank switching
(8k old) must be aligned to a 512k boundary. That means they can only start at bank 0
or 64 in the flash ROM or at bank 0 in the freezer RAM.

41

6 Cartridge emulation

The SpartaDOS X emulation uses the same bank switching scheme as the
“Ultimate 1MB” extension. The corresponding image has a maximum size of 512k. Cur-
rently the SpartaDOS X 4.45 image for the Ultimate 1MB extension has 256k and can
therefore be used without problems at bank 0 or 64 in the flash ROM or at bank 0 in the
freezer RAM.

6.1.2 Module types

The module type defines at which address in the Atari the data from the cartridge
emulation shall be visible. Also additional bank switching registers (e.g. for OSS modules)
are activated the area $D500. . . $D5FF, depending on the module type.

The following module types are supported:

8k 8k standard module, $A000. . . $BFFF.
The software can access the whole memory, i.e. the flash ROM and the freezer
RAM, via the bank switching register of the cartridge emulation.

8k+RAM 8k module, $A000. . . $BFFF
with optional 8k RAM bank at $9000. . . $BFFF. Both areas can be selected
independently via separate bank registers.

8k old 512k bankswitching module, $A000. . . $BFFF.
TURBO FREEZER 2005 compatible bank switching.
Bank 0 or 64 must be used as start bank.

8k AtariMax

1MB (8MBit) bank switching module, $A000. . . $BFFF.
Bank switching according to the AtariMax/MegaMax standard.

Caution! The cartridge emulation offers 64k less than the AtariMax 8Mbit
module. Therefore modules which require the complete 1MB of memory will
not work, like for example Space Harrier. When creating own modules with
the MaxFlash software, the maximum size of 960k must not be exceeded. In
addition the bank 0 must be used as start bank.

16k 16k standard module, $8000. . . $BFFF.
Bank switching is possible like in the 8k mode.

OSS 16k OSS bank switching module, $A000. . . $BFFF.
For example MAC/65 or ACTION!.

6.2 Activation of the cartridge emulation

To activate the cartridge emulation, move the “CartEmu” switch to the right position (ON)
while the Atari is switched off. When switching the Atari on, a small menu is displayed
where the cartridge emulation can be configured.

Additionally you can enter the cartridge emulation menu from the
TURBO FREEZER menu via the key [K] or [Shift]+[K]. This works only if the car-
tridge emulation is currently active, i.e. at least one of the switches “CartEmu” or

42

6.3 Cartridge emulation menu

“FlashWrite” is in the right position (ON). The cartridge emulation is completely disabled
if both switches are in the left position (OFF).

6.3 Cartridge emulation menu

The current configuration is displayed in the middle of the screen. The online help with
the available options is displayed at the bottom of the screen.

MODE Selects the emulated module type.
OFF deactivates the cartridge emulation.
PicoDos starts the integrated MyPicoDos instead of a module.

SRC Selects the flash ROM or freezer RAM as source for the module data.

BANK Selects the flash ROM or freezer RAM start bank.

SDX Selects the SpartaDOS X emulation. You can choose between OFF,
ROM Bank 0, ROM Bank 64 and RAM Bank 0.

BOOT Selects if the module shall be started via a cold start (COLD) or a warm
start (WARM). This option should normally be set to COLD, because other-
wise the operating system variables and the module are not correctly initial-
ized. The option WARM is intended for developers and only makes sense if
the cartridge emulation was activated from the TURBO FREEZER menu via
[Shift]+[K]. This way the cartridge emulation can be reconfigured while
keeping the internal RAM of the ATARI unchanged. This can be useful during
development.

Some frequently used configurations can be selected with a single key press.

[D] Selects the default configuration: Mode 8k, Bank 0, Source ROM, SDX OFF and
Boot Cold.

[P] Selects the Mode PicoDos.

[O] Deactivates the cartridge emulation: Mode OFF, SDX OFF

Pressing the [RETURN] key activates the currently selected configuration. Pressing [ESC]

deactivates the cartridge emulation and restarts the Atari.

6.4 Command summary

The debugger supports the following commands, which all begin with K, to control
the cartridge emulation. The commands have the same effect as manually chaning the
configuration registers starting at $D500, but some people are said to prefer mnemonics
over manual entry of hexadecimal values.

43

6 Cartridge emulation

K Display cartridge emulation configuration

K<0 Deactivate cartridge emulation completely:
Sets module type and SpartaDOS X emulation to OFF, all banks to 0 and
source to ROM

KM<type Sets module type of the cartridge emulation. Possible values:
0 off

8 8k module

8R 8k module with optional 8k RAM bank at $8000

8O 8k module with TURBO FREEZER 2005 bankswitching

A 8k AtariMax/MegaMax module

16 16k module

O 16k OSS module

KB<bank Select 8k main bank, ($00. . . $7F).

KBE<mode Switch 8k main bank on/off:
0 off

1 on

KR<bank Select optional 8k RAM bank ($00. . . $3D)

KRE<mode Switch optional 8k RAM bank on/off:
0 off

1 on

KX<mode Select SpartaDOS X emulation mode:
0 off

1 on and in flash ROM at bank 0

2 on and in flash ROM at bank 64

3 on and in freezer RAM at bank 0

KXB<bank Select SpartaDOS X emulation bank ($00. . . $3F). Only possible, if emulation
was activated via KX

KXM<mode Select SpartaDOS X mode. Only possible, if emulation was activated via KX

0 SpartaDOS X off, additional module off

1 SpartaDOS X on, additional module off

C SpartaDOS X off, additional module on

KO<bank Select OSS bank. Only possible, if emulation was activated via KM<O

0 OSS module off
1. . . 3

Select OSS bank 1. . . 3

KW<mode Switch write access to cartridge emulation on/off:
0 off

1 on

44

6.5 Further information

KS<source

Select source for the cartridge emulation:
0 flash ROM

1 freezer RAM

KN<mode Switch menu for cartridge emulation on/off:
0 cartridge emulation normal, menu deactivated

1 cartridge emulation off, menu activated

6.5 Further information

6.5.1 Using “real” cartridges

When using a “real” module in the cartridge port of the Atari 600 XL / 800 XL or in the
cartridge port of the Atari XE adapter board of the TURBO FREEZER, the cartridge
emulation should be deactivated completely. To this end the “CartEmu” as well as the
“FlashWrite” switch must be moved to the left position (OFF). Otherwise the system may
not work correctly, particularly if the cartridge uses bank switching.

6.5.2 TRIG3 – $D013

Compared to the cartridge emulation of the TURBO FREEZER 2005, a small but impor-
tant detail in the cartridge emulation of the TURBO FREEZER 2011 has been improved.
If the cartridge emulation is active, the presence of a module is correctly reported when
reading the TRIG3 ($D013) register. This means the new cartridge emulation behaves
100% like a “real” module and patching of module images, which was necessary for the
TURBO FREEZER 2005, is no longer required.

45

7 Programming the flash ROM

7.1 Basics

The software of the TURBO FREEZERs is not, as this is normally the case, stored in
an EPROM but in a flash ROM. The big advantage of the flash ROM is that it can be
re-programmed directly via the Atari. This means software updates can be installed at any
time and the unused parts of the flash ROM can be filled with module data without the
need for a special programming device. The flash ROM in the TURBO FREEZER can
be re-programmed up to 1.000.000 times, which should be enough for most experiments.

The flash ROM and the freezer RAM of the TURBO FREEZER are normally protected
against overwriting. The “FlashWrite” must be moved to the right position (ON) to enable
write access to both memories. If the switch is in the left position (OFF), the flash ROM
and the freezer RAM are write protected. It is very unlikely that any software overwrites
the flash ROM accidentally. To program the flash ROM a special write sequence must be
sent to the flash ROM, otherwise write access is simply ignored. Therefore is not really
dangerous to have the “FlashWrite” switch in the right position (ON) permanently.

When using “real” bank switching cartridges in the cartridge port both the
“CartEmu” as well as the “FlashWrite” switch should be turned OFF. This prevents a
conflict between the cartridge emulation and the bank switching cartridges.

Caution: It is important that the “OldOS” switch is turned OFF during flashing in
order to ensure that the flash ROM is exclusively accessible by the flashing program. If
the Oldrunner is active at the same time conflicts can occur – e. g. when an interrupt is
raised – and the Atari can crash.

7.2 Banks and blocks in the flash ROM

It is helpful to know some details about the inner structure of the flash ROM in order
to use it best. The used flash ROM is partitioned into blocks of 64k each (i. e. eight 8k
banks). These blocks can be re-programed completely independent of each other. This
means that e. g. changes to the data of the cartridge emulation to not impact the freezer
software and vice versa.

Unfortunately the partitioning into 64k blocks also has a small disadvantage. It is not
possible to re-program only a part of a 64k block. Still free, not yet programmed parts can
be programmed later on. You can for example first program an 8k module into bank 0 and
program later another 8k module into bank 1 of the same block. But is it recommended
to merge several e. g. 8k modules into a large file and program them then in one go. The

47

7 Programming the flash ROM

restriction to 64k blocks does of course not apply to the freezer RAM. There every 8k
bank can be programmed separately.

If the start bank is not at a 64k block boundary, then the flash program asks if the
complete 64k block shall first be erased or not. If the 64k block is not erased, unused (e. g.
previously erased) parts of a 64k block can be filled with data. If you accidentally try to
overwrite already used parts, an error message appears and you have to re-program the
complete 64k block.

7.3 Starting the flash program

To program the flash ROM resp. the freezer RAM the “FlashWrite” switch must be
turned right (ON). The program FLASH.COM must be loaded from the system disk. If the
switch is turned OFF, then the program will not find the flash ROM and will output an
error message. In this case you can turn the switch right and confirm the question restart

program? with [Y]. The flash program outputs the following information when it starts:

• Type of the flash ROM
• Version number and date of freezer software in the flash ROM

In case no freezer software is present in the flash ROM, the output reads n/a instead of
the version number. The version number can also be displayed in the debugger via the
VER command.

7.4 Using the flash program

The flash program offers the following operations:

Program CartEmu flash

Program the flash ROM area of the cartridge emulation (banks 0. . . 119). The
area for the freezer software (banks 120. . . 127) remains protected in this case
and cannot be overwritten accidentally. If you only work with the cartridge
emulation, then you should always only use this operation.

Program CartEmu+Freezer flash

Program the complete flash ROM (banks 0. . . 127). With this you can update
also the freezer software (banks 120. . . 127).

Write flash to file

Write the flash ROM content to a file.
Program RAM

Program the freezer RAM (banks 0. . . 47).

Write RAM to file

Write the freezer RAM content to a file.

48

7.5 Programming the flash ROM and freezer RAM

Erase flash

Erase the complete flash ROM.

Caution: This will erase the complete flash ROM, including the freezer
software. In order to then use the TURBO FREEZER in a normal fashion
you have to first re-program the freezer software again starting at bank 120.
Otherwise the Atari will crash if the “Freeze” button is pressed or if the
cartridge emulation or the Oldrunner is activated.

Start CartEmu

Jump to the menu of the cartridge emulation. With this you can test the
module you have just programmed.

7.5 Programming the flash ROM and freezer RAM

The following steps are performed when programing the flash ROM resp. the freezer RAM.
At first the flash program asks the user for the first bank number to be programmed. Valid
values are 0. . . 127 for the flash ROM and 0. . . 47 for the freezer RAM. Then the flash
program asks for the number of 8k banks to be programmed. If you confirm the default
value 0, the complete file will be programmed automatically.

Now the name of the file which contains the data to be programmed must be entered.
The file must only contain the data to be programmed, i. e. it must not contain a COM
header or something similar and the file size must be a multiple of 8k. The single 8k
banks of the flash ROM (or the freezer RAM) are now programmed sequentially. When
programing the flash ROM, every 64k block will be erased when a 64k block boundary is
reached. Programming will also stop if the end of the flash ROM or freezer RAM area is
reached before the end of the file is reached.

During keyboard input and during programming, the current operation can be aborted
with the [BREAK] key at any time.

7.6 Updating the freezer software

If the freezer software in the flash ROM was overwritten or erased accidentally, or if the
software shall be replaced by a newer version, then the file FREEZER.ROM from the system
disk must be programmed to the banks 120. . . 127 of the flash ROM. To this end the
following steps are required:

1. Turn the “FlashWrite” switch right (ON).
2. Load the flash program FLASH.COM from the system disk.
3. Choose the 2nd menu item (Program CartEmu+Freezer flash).
4. Enter start bank 120.
5. Confirm the default value 0 for the number of banks with [RETURN].
6. Enter FREEZER.ROM as file name.

49

8 For experts: Technical details

8.1 Hardware

The heart of the TURBO FREEZER is the Xilinx XC95144XL CPLD. It contains the
complete logic of the freezer and controls the freezer RAM as well as the cartridge emulation.
There are 1MB flash ROM and 1MB battery backed freezer RAM present which are shared
between the functional blocks, i.e. freezer, cartridge emulation and 512k RAM extension.

When the freezer RAM or the flash ROM of the freezer have to be mirrored into the
Atari, the internal RAM and ROM of the Atari must be deactivated. This is achieved using
a small trick. The freezer pulls the line of the ANTIC refresh pin, which is intended to be
an output, to “low”. This makes the MMU in the Atari believe that ANTIC is performing
a memory refresh, hence it deactivates all built-in memory. According to Bernhard Engl,
who works as a full-time chip designer nowadays, it is not dangerous to pull a “high” level
“low” from outside in the NMOS-Depletion-Load technology, because that is how NMOS
works anyway. If the ANTIC had been manufactured in CMOS technology, this approach
would have been dangerous and could have damaged the ANTIC – and there never had
been a TURBO FREEZER.

8.2 Memory partitions

8.2.1 Freezer RAM

512k of the freezer RAM are directly assigned to the 512k RAM extension. The remaining
512k RAM are shared between the freezer and the cartridge emulation. The freezer can
access the upper 128k (banks 48. . . 63) of this area. The topmost 16k (banks 62 and 63)
are exclusively reserved for the freezer (i. e. for the hardware register shadowing). The
bank switching in the freezer addresses the freezer RAM not in 8k banks, like the cartridge
emulation, but in 4k banks. The cartridge emulation can access the complete RAM except
for the last 16k, making available a maximum of 496k (banks 0. . . 61).

8.2.2 Flash ROM

The cartridge emulation can access the complete 1MB flash ROM, the freezer can access the
upper 512k thereof. The topmost 64k are reserved for the freezer software, the Oldrunner
OS and the cartridge emulation menu. The topmost 64k (banks 120. . . 127) are currently
used as follows.

51

8 For experts: Technical details

• Bank 120: Free
• Bank 121: Free
• Bank 122: Free
• Bank 123: Freezer software bank 3
• Bank 124: Freezer software bank 1 (start bank)
• Bank 125: Freezer software bank 2
• Bank 126: Cartridge emulation menu
• Bank 127: Oldrunner OS

The banks 127 (Oldrunner OS), 126 (cartridge emulation) and 124 (freezer software)
are “hardwired” in the CPLD logic. The usage of the remaining banks 120. . . 123 and 125
may change in later versions.

8.3 Freezer

As long as the “Freeze” button is not pressed, the freezer is completely invisible for the
Atari. That means, no software can detect if there is a freezer attached to the Atari or
not. Only when the button is pressed, the freezer becomes visible and active.

8.3.1 Shadowing of hardware registers

The freezer uses the following “trick” to read the content of the non-readable hardware
registers of ANTIC, GTIA and POKEY. Whenever there is a write access to the area
$D000. . . $D7FF, the freezer RAM is also activated. This way the freezer software can
read the data of the custom chips from there without problems. The write access to the
RAM is only performed if the “Freeze” button has not been pressed yet. Otherwise the
freezer software itself would overwrite the stored data.

The addresses of custom chips in the Atari are not completely decoded. The ANTIC
can for example be accessed via the addresses $D40x, $D41x, When $22 is written
to $D400 and $00 is written to $D410 afterwards, both values will end up in the DMACTL

register of the ANTIC. DMACTL will have the value $00 after the 2nd write access.
Some programs use these tricks. To enable the freezer to restore the exact state upon

resuming, the freezer logic has to take this in account. Therefore the non-decoded address
lines are pulled “low” when shadowing the hardware register. For ANTIC ($D4xx) and
POKEY ($D2xx) these are A4–A7, for GTIA ($D0xx) these are A5–A7.

If the Atari contains stereo POKEY extension, then the first POKEY is accessible via
$D20x, $D22x, . . . , the second POKEY via $D21x, $D23x, Turning the “Stereo”
switch of the freezer right (ON) changes the shadowing logic. During access to $D2xx
the address lines A5–A7 are pulled “low” then and the data of both POKEYs are stored
correctly.

52

8.3 Freezer

8.3.2 Mirroring the freezer memory in

When the freezer is activated, the freezer RAM resp. the flash ROM is mirrored to the
area $0000. . . $3FFF. Bank switching is used to choose between 32 RAM banks of 4k each
(a total of 128k) and 64 ROM banks of 8k each (a total of 512k). The memory map in the
Atari looks as follows.

• $0000. . . $0FFF: Fixed 4k RAM bank (bank 31)
• $1000. . . $1FFF: Switchable 4k RAM bank (bank 0. . . 31)
• $2000. . . $3FFF: Switchable 8k ROM bank (bank 64. . . 127)

The 64 ROM banks of 8k each are located at the end of the flash ROM and correspond to
the banks 64. . . 127 of the cartridge emulation. The 32 RAM banks of 4k each are located
at the end of the freezer RAMs and correspond to the banks 48. . . 63 of the cartridge
emulation. The last 4k bank (bank 31) is used for the shadowing of the hardware registers
and is mirrored to the address $0000 in the Atari if the freezer is activated.

8.3.3 Activating the freezer

The freezer logic has 5 internal states.

• Freezer deactivated
• Freezer half activated
• Freezer activation triggered
• Freezer activated
• Freezer temporarily deactivated

After switching the Atari on, the freezer is in the state “deactivated”. In this state and
in the state “half activated” all write access to the custom chip area is stored in the shadow
RAM.

When the “Freeze” button is pressed, nothing happens at first. Only when the first
access to the area $FFF8. . . $FFFF (which contains also the IRQ and NMI vectors) is
performed and the “Freeze” button is still pressed, the freezer reacts. It saves the state of
the A2 line (which is required later on to distinguish between IRQ and NMI) and enters
the state “half activated”. In the next clock cycle there are now these two possibilities:

• If the “Freeze” button is no longer pressed or an access to another memory area
than $FFF8. . . $FFFF is performed, the freezer enters the “deactivated” state again.

• If the “Freeze” button is still pressed and there is an access to the memory area
$FFF8. . . $FFFF again, the freezer performs the transition to the state “activation
triggered” as described below.

The freezer deactivates the memory in the Atari and puts the value $21 on the data bus.
This changes the interrupt vectors to the address $21xx, as the CPU is currently trying to
load the high byte of the interrupt vector. The low byte stems from the previous access to
the $FFF8. . . $FFFF area and therefore has the original value.

53

8 For experts: Technical details

After this, the freezer enters the state “activation triggered”. Just like in the state
“activated” the TURBO FREEZER now mirrors its own memory in. The ROM bank 124
with the start code of the freezer software is mirrored to the memory area $2000. . . $3FFF.
Starting at $2000 a complete page full of “RTI” instructions is present. After this, i. e.
starting at $2100 a so-called “NOP slide”, i. e. a page full of “NOP” instructions for the
“rerouted” interrupt routine is present. The actual freezer software starting with the
initialization routine follows after that.

During the activation phase, the occurrence of IRQs is no problem, because they are
masked by the CPU during the execution of an interrupt routine anyway. If an NMI occurs
during the activation phase, the freezer reroutes its interrupt vectors to the address $20xx.
There only “RTI” are present and the NMI will be ended again immediately. This means
the freezer “suppresses” all further interrupts during the activation phase.

After running through the NOP slide and disabling the interrupts the software puts
the freezer into the state “activated” via a write access to the address $D720. If the now
activated freezer software wants to access the Atari memory in the area $0000. . . $3FFF it
first has to disable the freezer RAM resp. the flash ROM temporarily. This is done via
a write access to the address $D700, which puts the freezer into the state “temporarily
deactivated”. An additional write access to the address $D700 puts the freezer back into
the state “activated” and the freezer RAM resp. the flash ROM are mirrored in again.

When the freezer software is exiting and the interrupted program is resumed, the freezer
has of course to be put into the state “deactivated” again. This is done via a read access
to the address $D700.

8.3.4 Configuration registers

When the freezer is activated, a number of configuration registers is mirrored into the area
$D700. . . $D7FF. When these registers are accessed, the internal memory in the Atari is
deactivated to prevent problems with potentially installed internal extensions.

$D700. . . $D70F: Freezer State Control (w)
7 6 5 4 3 2 1 0
- - - - - - - -

Write access to this register toggles the freezer between the states “activated” and “tem-
porarily deactivated”.

$D700. . . $D70F: Freezer Disable (r)
7 6 5 4 3 2 1 0
- - - - - - - -

A read access to this register put the freezer into the state “deactivated”.

54

8.3 Freezer

$D710. . . $D71F: Freezer RAM A4/A5 (r/w)
7 6 5 4 3 2 1 0
- - - - - - - -

A read access to this register changes the handling of the address lines A4 and A5 when
accessing the freezer RAM ($0000. . . $1FFF). A4 is set to the state A2 had when the
freezer was activated. A5 is set to the current state of the “Stereo” switch. This way the
freezer software can detect if the freezer was activated via an NMI or via an IRQ and if
the stereo POKEY mode is active or not. A write access to this register resets the logic to
the normal handling again.

$D720. . . $D72F: Freezer Startup Complete (r/w)
7 6 5 4 3 2 1 0
- - - - - - - -

A read or write access to this register puts the freezer from the state “activation triggered”
into the state “activated”.

$D740. . . $D77F: Flash ROM Bank Select (r/w)
7 6 5 4 3 2 1 0
- - - - - - - -

A read or write access to these registers selects the 8k flash ROM bank which is mirrored
to $2000. . . $3FFF. An access to $D740 selects bank 64, $D741 selects bank 65, . . . $D77F
selects bank 127.

$D780. . . $D79F: Freezer RAM Bank Select (r/w)
7 6 5 4 3 2 1 0
- - - - - - - -

A read or write access to these registers selects the 4k freezer RAM bank which is mirrored
to $1000. . . $2FFF. An access to $D780 selects bank 0, $D781 selects bank 1, . . . $D79F
selects bank 31.

8.3.5 Freezer software and OS ROMs

The freezer software uses its own code for the most functions (e. g. the keyboard input)
instead of using the routines of the operating system. This makes the software mostly
independent of the used operating system and also independent of the state of the Atari
when freezing is triggered. Yet the used operation system must provide some functions to
ensure correct operation of the freezer software and these functions must behave like in
the original operating system.

• Standard character set at $E000. . . $E3FF
• NMI and IRQ handling
• SIO function ($E459), used by the SIO command in the debugger and when save to

or loading from cassette

All alternative OS versions which have been available so far, like for example “QMEG
OS” or “Romdisk OS”, fulfill these requirements. Problems came up recently with the new

55

8 For experts: Technical details

“Ultimate 1MB BIOS”. It neither contains a standard interrupt handling nor a character
set at $E000. Therefore the screen is completely garbled when the freezer is activated
from within the “Ultimate 1MB BIOS”.

8.4 512k RAM extension

A separate 512k RAM chip is included for the 512k RAM extension. This way the freezer,
the cartridge emulation with modules in the freezer RAM, and the RAM extension can be
used in parallel to the full extent.

Because the PIA signals are not available on the PBI, the CPLD must mimic the
behavior of the PIA registers. The PIA in the Atari keeps working “in parallel”, so BASIC,
OS ROM, and Self Test are controlled as usual. Read access to the PIA is ignored by the
CPLD, i. e. in this case the Atari reads the real PIA registers as usual. The logic only
reacts on write access to the addresses $D301 (PORTB) and $D303 (PBCTL). The CPLD
also saves the value of bit 2 of PBCTL, which controls if the access is performed on the data
register PORTB (bit 2 = 1) or on the data direction register (bit 2 = 0).

The CPLD stores the data of a write access to $D301 either in the internal data register
or in the internal data direction register. If a PIA pin it setup as an input, then pull-up
resistors in the Atari pull it “high”. If a PIA pin is setup as an output, then the data
register controls if a “low” or a “high” signal is output.

The CPLD emulates exactly this behavior and therefore behaves exactly like every other
RAM extension in the Atari. The Oldrunner OS for example sets PORTB up as input
because the 400/800 had 4 joystick ports – but no RAM/ROM control via PORTB. This
automatically deactivates every RAM extension, because bit 4 of PORTB must be “low” to
activate the RAM extension. But the emulated pull-up resistor in the CPLD pulls the pin
“high” automatically in this case, like it would have been the case in the PIA.

The rest of the RAM extension logic is relatively simple. If the “Ramdisk” switch is
turned ON and if bit 4 of the emulated PORTB register has the value 0, then the internal
memory of the Atari is disabled for every access to $4000. . . $7FFF and a 16k bank of
the 512k RAM extension is mirrored in instead. The bits 2,3,5,6,7 of the emulated PORTB

register determine in this case which of the 32 banks of 16k size shall be used.

8.5 Oldrunner

The Oldrunner is active if the “OldOS” switch is turned to ON). For every access to
$E000. . . $FFFF bank 127 of the flash ROM is mirrored in and for every access to
$C000. . . $CFFF the internal memory is deactivated. This makes the Atari behave exactly
like the original Atari 400/800, which did not have any memory at $C000. . . $CFFF. When
the Math Pack area ($D800. . . $DFFF) is accessed, the internal OS ROM of the Atari will
be mirrored in and the Math Pack contained in the OS will be used.

56

8.6 Cartridge emulation

8.6 Cartridge emulation

The cartridge emulation offers very many configuration options. Controlling all these
options only with switches would not have been handy. Therefore the major part of the
configuration is performed via software, for example from within the menu of the cartridge
emulation or from within the debugger of the freezer.

8.6.1 Configuration switches

One function of the “CartEmu” and “FlashWrite” switches is to control access to the
configuration registers. If both switches are turned OFF, then the configuration registers
are inaccessible. If at least one of the switches is turned ON, then the configuration registers
$D590. . . $D596 can be accessed.

If the “CartEmu” switch is turned ON when the Atari is switched on, then bit 2 of
the register $D595 is initialized to 1. This disables the rest of the cartridge emulation
configuration and activates the cartridge emulation menu.

If the “FlashWrite” switch is turned OFF, then no write access to the flash ROM resp.
the freezer RAM is possible. The only exception is the 8k+RAM mode in which write
access to the optional 8k freezer RAM bank at $8000. . . $9FFF is always possible. If the
“FlashWrite” is turned ON, then write access to the flash ROM and the freezer RAM is
possible after is has been enabled via bit 0 of the register $D595.

8.6.2 Configuration registers

The configuration registers at $D590. . . $D596 become accessible if at least one of the
“CartEmu” or “Flash Write” switches is turned ON. These registers are writeable and
readable. All unused bits of these registers should be set to 0. During a read access to the
registers, all unused bits also return 0. All registers except register $D595 are set to $00
during power-on. If the “CartEmu” switch is turned OFF, the register is set to $00. If
it is turned ON, the register is set to $04. Depending on the active modules type (e. g. in
OSS or AtariMax mode) additional registers are accessible in the area $D500. . . $D5FF.

$D590: Bank (r/w)

7 6 5 4 3 2 1 0
- bank

Number of the selected bank for the cartridge emulation (0. . . 127). Bit 0 is ignored in 16k
mode.

$D591: Bank Enable (r/w)

7 6 5 4 3 2 1 0
- - - - - - - enable

State of the ROM bank of the module. The value 0 disables the module, 1 enables it. In
8k+RAM mode this bit only controls the area at $A000. . . $BFFF. The optional RAM area
at $8000. . . $9FFF is controlled by the register $D593.

57

8 For experts: Technical details

$D592: RAM Bank (r/w)
7 6 5 4 3 2 1 0
- - bank

Number of the selected RAM bank (0. . . 63) in 8k+RAM mode.

$D593: RAM Bank Enable (r/w)
7 6 5 4 3 2 1 0
- - - - - - - enable

State of the RAM bank of the module. In 8k+RAM mode the value 0 disables the RAM
bank, 1 enables it.

$D594: Mode (r/w)
7 6 5 4 3 2 1 0
- - - - - mode

Type of the emulated module. The following modules types are supported.

• 0: Cartridge emulation deactivated
• 1: 8k module
• 2: 8k+RAM module
• 3: 8k module with TURBO FREEZER 2005 bank switching
• 4: 16k module
• 5: OSS module
• 6: AtariMax module
• 7: Reserved, do not use!

$D595: Misc Configuration (r/w)
7 6 5 4 3 2 1 0
- - - - - menu source write

menu Cartridge emulation menu control
0 Normal cartridge emulation

1 Activate cartridge emulation menu (bank 126)

source Module data source
0 Flash ROM

1 Freezer RAM

write Write access control
0 Write access disabled

1 Write access allowed, if the “FlashWrite” switch is turned ON in addition

58

8.6 Cartridge emulation

$D596: SDX Configuration (r/w)
7 6 5 4 3 2 1 0
- - - - - - config

00 SpartaDOS X deactivated

01 SpartaDOS X in freezer RAM starting at bank 0

10 SpartaDOS X in flash ROM starting at bank 0

11 SpartaDOS X in flash ROM starting at bank 64

8.6.2.1 Additional registers in 8k mode with TURBO FREEZER 2005 bank
switching

$D540. . . $D57F: Bank Select (r/w)
7 6 5 4 3 2 1 0
- - - - - - - -

A read or write access to this area selects the bank. An access to address $D540 selects
bank 0, $D541 selects bank 1, . . . , $D57F selects bank 63. If the bank register $D590 is
set to a bank in the range 64. . . 127, then $D540. . . $D57F will refer to the banks 64. . . 127
instead of the banks 0. . . 63.

$D580: Cart Disable (r/w)
7 6 5 4 3 2 1 0
- - - - - - - -

A read or write access to this register disables the module.

$D581: Cart Enable (r/w)
7 6 5 4 3 2 1 0
- - - - - - - -

A read or write access to this register enables the module.

$D584: Write Disable (r/w)
7 6 5 4 3 2 1 0
- - - - - - - -

A read or write access to this register disables write access to the module.

$D585: Write Enable (r/w)
7 6 5 4 3 2 1 0
- - - - - - - -

A read or write access to this register enables write access to the module.

59

8 For experts: Technical details

8.6.2.2 Additional registers in OSS mode

$D500. . . $D50F: OSS Bank Select (r/w)
7 6 5 4 3 2 1 0
- - - - - - - -

These registers implement the bank select and cart disable as in OSS modules of type“M091”.
A read or write access to the respective address activates the following configuration.

$D500 Module enabled, $A000. . . $AFFF bank 1, $B000. . . $BFFF bank 0

$D501 Module enabled, $A000. . . $AFFF bank 3, $B000. . . $BFFF bank 0

$D508 Module disabled

$D509 Module enabled, $A000. . . $AFFF bank 2, $B000. . . $BFFF bank 0

8.6.2.3 Additional registers in AtariMax mode

$D500. . . $D57F: Bank Select (r/w)
7 6 5 4 3 2 1 0
- - - - - - - -

A read or write access to this area activates the module and selects the bank. An access
to address $D500 selects bank 0, $D501 selects bank 1, . . . , $D57F selects bank 127.

$D580: Cart Disable (r/w)
7 6 5 4 3 2 1 0
- - - - - - - -

A read or write access to this register disables the module.
Caution: In the original AtariMax module the addresses $D581. . . $D5FF can also be

used to disable the module. The cartridge emulation only offers this single address for this.

60

8.6 Cartridge emulation

8.6.2.4 Additional registers when SpartaDOS X is active

$D5E0: Bank Select (r/w)
7 6 5 4 3 2 1 0
control bank

control SpartaDOS X control
00 SpartaDOS X enabled, additional module disabled

01 SpartaDOS X enabled, additional module disabled

10 SpartaDOS X disabled, additional module enabled

11 SpartaDOS X disabled, additional module disabled

bank SpartaDOS X bank select (bank 0. . . 63)

If the SpartaDOS X emulation has been activated via the register $D596, it has priority
over the rest of the cartridge emulation. The cartridge emulation then behaves as if an
original SpartaDOS X module was “plugged in”.

61

9 Further information and downloads

• TURBO FREEZER
http://turbofreezer.horus.com

Up to date information, updates and more.

• ABBUC
http://www.abbuc.de

Source of supply where TURBO FREEZER can be ordered. This website is mainly
in German language.

• Xilinx
http://www.xilinx.com

Data sheets of the CPLD XC95144XL, download of the development environment
ISE WebPACK.

• ST Microelectronics
http://www.st.com

Data sheets of the Flash ROM 29F040B.

63

http://turbofreezer.horus.com
http://www.abbuc.de
http://www.xilinx.com
http://www.st.com

Warranty and intended usage

The warranty on material and assembly is 6 months. If the freezer is defective, it may
be replaced by one that is functioning. In case of hardware incompatibility, the price
of the freezer will be refunded, after the part has been returned, free of postage. This
warranty only covers the hardware. The risk for error free operation of the software and the
application for specific tasks rest solely with the buyer or user. There are no rights, directly
or implied, of whatever form, concerning software, exchange, improvements, refunds (fully
or partially), changes, updating etc. Warranty does not cover damage caused by transport,
incorrect installation or use, static discharges, pollution, attempted extensions and any
alterations to the electronics outside our workshop. There’s also no warranty on any parts
that were not installed by us.

Usage of the TURBO FREEZER must not in any way infringe rights of third parties or
violate any laws or regulations. Any responsibility or claims by third parties of any form,
illegal use, damage to property or dead or living matter, and any other kind of claim is
not accepted by us in any way and are the sole responsibility of the user. It’s the sole
responsibility of the user, owner or buyer to prevent illegal use or any other damage that
may arise from using the product. Adults are responsible for their children. The user
should be aware of regulations or laws concerning the usage and seek council in case of
doubt. Claiming ignorance or lack of knowledge is not an option out.

The use of commercial names, trademarks, labels or manufacturer makes is not done
with the assumption that any of these items should be freely usable and no rights of the
items are intentionally claimed or assumed. All references do not take any patents or other
rights into account. Any claim from manufacturers is strictly excluded. Use at your own
risk.

This manual is protected by copyright and subject to Creative Commons license
BY-NA-SA 3.0.
http://creativecommons.org/licenses/by-nc-sa/3.0/legalcode.

http://creativecommons.org/licenses/by-nc-sa/3.0/legalcode

	Installation
	Verifying the power supply
	Assembling the freezer
	Protecting from electro-static discharge
	Connecting the freezer electronic with the adapter board
	Disconnecting the freezer electronic from the adapter board

	Plugging the freezer in
	Atari 600 XL (at least 64k RAM) and Atari 800 XL
	Atari 800 XE, 65 XE and 130 XE

	Turning the freezer on
	Setting the basic configuration
	Activating the freezer
	Creating the system disk
	Activating the stereo POKEY mode (optional)
	Activating the integrated 512k RAM extension (optional)
	Using cartridges with the Atari XE

	Extended configurations for experts in soldering
	Providing an internal power supply
	Installing a SYSTEM RESET key
	Providing compatibility with 1MB RAM extensions

	Usage
	Starting the freezer main menu
	Freezing and resuming a program
	Saving a frozen program
	Adapting the boot disk loader
	Freezing a program that loads parts later

	Swapping the frozen and a saved program
	Clearing the RAM under the OS ROM
	Starting debugger and DOS
	Starting the menu of the cartridge emulation

	Debugger and DOS
	Disk Operating System (DOS)
	Executing commands
	Command summary
	Characteristics of specific commands
	Error messages

	Debugger
	Access to memory and hardware registers
	Command summary
	Input of values (hexadecimal, decimal, internal code)
	Input of vectors
	Access to extended memory, RAM, ROM
	Display display list
	Search in memory
	Execute SIO commands
	Display interrupt and VCOUNT
	Activate direct I/O mode
	Display version number
	Display OS vectors
	Display handler address table
	Display memory usage map
	Activate printer output
	Control AtariSIO remotely

	512k RAM extension
	Oldrunner – Atari OS Rev. B
	Cartridge emulation
	Basics
	Bank numbers
	Module types

	Activation of the cartridge emulation
	Cartridge emulation menu
	Command summary
	Further information
	Using "real" cartridges
	TRIG3 – $D013

	Programming the flash ROM
	Basics
	Banks and blocks in the flash ROM
	Starting the flash program
	Using the flash program
	Programming the flash ROM and freezer RAM
	Updating the freezer software

	For experts: Technical details
	Hardware
	Memory partitions
	Freezer RAM
	Flash ROM

	Freezer
	Shadowing of hardware registers
	Mirroring the freezer memory in
	Activating the freezer
	Configuration registers
	Freezer software and OS ROMs

	512k RAM extension
	Oldrunner
	Cartridge emulation
	Configuration switches
	Configuration registers

	Further information and downloads

